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Abstract
The Joule heat generation in a quantum semiconductor nanowire joining two
classical reservoirs is considered. We assume that the conductance of the
system is determined by the phonon-assisted ballistic resistance. The spatial
distribution of the generated heat is analysed. The heat generated within the
nanostructure is determined. It is simply related to the phonon-assisted variation
�G of the conductance. For a fixed voltage, the corresponding variation of
the overall heat generation is negative and is determined by �G. Due to the
same interaction the reduction of the heat generated in each reservoir is the
same as the heat generated in the nanostructure. In other words, the presence
of collisions within a nanowire does not violate the equality of the heat release
in the reservoirs that are connected by the nanowire, although the rates and
mechanisms of relaxation there may be different. We come to the conclusion
that further investigation of various situations where the nanostructures are
involved is needed to gain understanding as to why in some cases different heat
generation in the two reservoirs is observed and predicted.

1. Introduction

During recent years various properties of quantum point contacts (such as quantum wires) have
been investigated theoretically and by experiment. Among them one can name a step-like
variation of conductance (ohmic and non-ohmic), shot noise, ultrasonic absorption, a number
of optical phenomena and various other transport effects.

The resistance of a classical ballistic point contact between two metals was considered by
Sharvin [1]. The characteristic dimensions of the contact were assumed to be much larger than
the de Broglie wavelength. The quantization of the conductance of quantum ballistic contacts
in units of G0 = e2/π h̄ has been observed in [2, 3]. The spatial distribution of an electrostatic
potential in quantum transport has been investigated for many different shapes of the contacts
(see, e.g. [4, 5] and references therein).

Kulik et al [6] pointed out that the processes leading to electric resistance and heat
generation were spatially separated in a classical point contact. Thermoelectric properties
of quantum nanostructures have been studied quite extensively [7–12]. It has been shown
that due to the subband structure of a quantum point contact the oscillatory behaviour of
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the thermopower, the thermal conductance and the Peltier coefficient can be observed [8–12].
In [12] quantum size effects of the kinetic coefficients have been observed in a quantum point
contact and a usage of this structure as an effective local electron gas thermometer has been
demonstrated.

The total amount of Joule heat generated by a quantum contact can be determined by
simple energy conservation considerations provided that the total contact conductance G is
known. However, the spatial distribution of the heat that can be expressed via the rate of
entropy production should be treated specially for every particular physical situation.

The problem of heat distribution in nanostructures and at their contacts (reservoirs) is
important from a theoretical point of view. It may also be of pivotal importance to the issue of
proper operation of scaled-down devices and very large scale integration circuits. This problem
has been also considered with regard to experiments [13, 14]. The spatial distribution of Joule
heat generated by a current across such a point contact has been treated in the diffusive limit
by Rokni and Levinson [15]. One of the results of this paper is that in general the Joule heat
released in each of the two reservoirs is different; however, it can be the same in the case where
the reservoirs are identical.

One of the results of the papers [16, 17] where the case of ballistic nanowires is considered
is the conclusion that all the Joule heat is released in the reservoirs, and irrespective of the actual
form and the rate of electron relaxation in both reservoirs, the amount of the heat released in
each of them is the same. In the present paper we demonstrate that the reason is a special type
of symmetry that exists in degenerate electron systems. There are, however, some differences
between the situations considered in [15] and [17]. One point is that whereas the electron
collisions are considered in [15] no collisions are assumed in the nanowire in [16, 17]. The
purpose of the present paper is to investigate the heat generation under qualitatively different
conditions, namely taking into account the electron–phonon collisions in a current-carrying
semiconductor quantum nanostructures. In other words, we consider a regime where a pure
ballistic conductance is violated by the electron–phonon collisions and would like to find
out whether the collisions in a spatially homogeneous nanowire can be responsible for the
asymmetry of the heat release in the reservoirs.

The electron–phonon scattering we consider in the present paper is rather weak. This
means that the variation |�G| of the conductance due to the electron–phonon scattering is
smaller than G. At the same time it is quite discernible in experiments, as detailed investigation
of its temperature dependence and the estimates have shown in [18, 19]. The absolute value of
|�G|/G0 can be as big as 1: see [19] and the estimation given in section 6. However, in view
of the nonlocal character of the quasiballistic transport it is not obvious without calculation that
the heat release within the nanostructure is also determined by �G.

One of the most interesting and important points of this investigation is to find out whether
the electron–phonon collisions can in principle change the situation with regard to equality of
the amount of heat released in both reservoirs irrespective to their form. It has been emphasized
in [15] that one of the reasons for enhancement of the interest in the Joule heat is the seeming
asymmetry of a point contact. It has been argued, erroneously, that, since the number of
the electrons moving in one direction is prevailing, more heat should be released there. This
reasoning is correct with regard to the reversible Peltier heat but not the Joule heat. It appears,
as we will show, that the equality of the Joule heat release in both reservoirs remains valid
also provided a weak electron–phonon scattering is present in the nanowire. We analyse a
specific electron–hole symmetry that is responsible for such a property provided the conduction
electrons obey the Fermi statistics. As a result, we arrive at the qualitative conclusion that the
collisions within the nanowire cannot be the single reason for the heat release asymmetry in the
reservoirs, and provide a physical analysis of the situation.
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There is another important point that is discussed in the present paper. The Joule heat
generated within the nanowire that we calculate is due to the electron–phonon scattering.
Sometimes an opinion is expressed that this part of the heat amounts to the energy transferred
to the phonon system in the course of electron–phonon collisions. And sometimes such a
conclusion may be true (cf [15]), but in the system considered in the present paper the physics
is entirely different. Although energy relaxation is essential for the applicability of our method
of the heat release calculation, in sections 3 and 6 we show that the heat release within the
nanowire is due to the relaxation of the nonequilibrium part of the electron distribution function.
The amount of heat directly associated with the nonequilibrium phonon generation is relatively
small.

The paper is organized as follows. In section 2 we analyse the notion of mechanical energy,
its dissipation and its relation with the entropy and heat production. In section 3 we consider
the heat released in a nanowire. In order to calculate the heat in the almost ballistic nanowire
it is sufficient to know the electron distribution function only in the zeroth approximation in
the electron–phonon interaction since the equation for the entropy production already involves
the electron–phonon scattering probability. To calculate the heat release in the reservoirs the
iterative procedure is not sufficient and one needs an essentially different approach.

In section 4 we explicitly take into account the scattering processes in the reservoirs and
determine the nonequilibrium deviation of the distribution function. In section 5 a special type
of symmetry characteristic for degenerate electron systems is considered. This symmetry is
responsible for the equality of the heat release in both reservoirs.

To gain a better understanding of the role of electron–phonon scattering in the heat
generation in a nanowire we discuss in some detail the role of elastic and inelastic processes
in section 6. This helps in understanding the physics of heat generation due to the electron–
phonon collisions in a nanowire.

2. Mechanical energy and heat

It will be convenient to consider an isolated system. Therefore we will have in mind the
following physical situation. There is a capacitor which is discharged through the conductor of
interest. The product RC of the whole system, R and C being the resistance and capacitance
respectively, is much bigger than any relaxation time characterizing the electron or phonon
system of the conductor. This means that for all practical purposes the conduction process can
be looked upon as a stationary one. The total energy of the system, U , is conserved while its
total entropy, Ŝ, is growing. The rate of heat generation is expressed through T ∂Ŝ/∂ t , where
T is the temperature. So our main purpose will be to calculate the rate of entropy production.

Although we are mostly interested in the consideration of microstructures, to calculate the
heat production we will also need the Boltzmann equation for bulk samples, since an essential
part of the heat is released in the reservoir regions. In what follows we will briefly discuss
the properties of the Boltzmann equation, bringing it to such a form that can be used in the
subsequent sections.

The Boltzmann equation for the electron distribution function, Fp(r, t), is

∂ Fp

∂ t
+ ∂ε̃p

∂p
∂ Fp

∂r
− ∂ε̃p

∂r
∂ Fp

∂p
=

[
∂ Fp

∂ t

]
coll

. (2.1)

Here ε̃p(r) = εp+eφ(r) is the total energy of an electron, and φ(r) is the electrostatic potential.
The term on the right-hand side describes the collisions of electrons with impurities (elastic
collisions) and with phonons (inelastic collisions). The latter is expressed through the phonon
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distribution function Nq , which satisfies the Boltzmann equation for phonons:

∂ Nq

∂ t
+ ∂�q

∂q
∂ Nq

∂r
− ∂�q

∂r
∂ Nq

∂q
=

[
∂ Nq

∂ t

]
coll

. (2.2)

Here �q is the phonon frequency (which in general can be a smooth function of the
spatial coordinates). The term on the right-hand side describes the collisions of phonons
with impurities (elastic collisions), with electrons and phonon–phonon collisions due to the
anharmonicity. One can also include in

[
∂ Fp/∂ t

]
coll

of equation (2.1) a term describing
electron–electron collisions.

Now we will discuss the energy conservation, or, in other words, the overall rate of heat
release. The same method can be applied to the Boltzmann equation describing transport
in nanostructures (see equation (3.3) below). We multiply equation (2.1) by εp(r) + eφ(r),
integrate by dξp, where dξp = d3 p/(2π h̄)3 (the summation over the spin variable is implied
here; we assume that the electron energy is spin-independent), and add equation (2.2),
transforming it in the same manner as equation (2.1) (see below). Further on we make use
of the following property of collision term of the Boltzmann equation:∫

dξp

[
∂ Fp

∂ t

]
coll

= 0, (2.3)

which means that the electron collisions conserve the number of electrons, and the charge
conservation law that follows from the Boltzmann equation:

e
∂n

∂ t
+ div j = 0, (2.4)

where

n(r) =
∫

dξp Fp(r), j = e
∫

dξp Fp(r)
∂ε

∂p
(2.5)

are the electron concentration and the current density respectively. One can write the resulting
energy conservation equation in the following form:

∂U

∂ t
+ div Q = jE, (2.6)

where E = −∇φ is the electric field. Here we made use of the fact that if electron–
phonon collisions are taken into account the total energy of the electron and phonon systems
is conserved. As a result, one obtains equation (2.6), where the energy density and the energy
flux are given by

U =
∫

dξp εp Fp +
∫

dηq h̄�q Nq, (2.7)

Q =
∫

dξp εp
∂εp

∂p
Fp +

∫
dηq h̄�q Nq

∂�q

∂q
. (2.8)

Here dηq = d3q/(2π)3; the summation over the phonon branches is implied.
In the derivation of equation (2.6) we made use of the following transformation:∫

dξp εp
∂εp

∂p
∂ Fp

∂r
−

∫
dξp εp

∂εp

∂r
∂ Fp

∂p
= 1

2

∫
dξp

[
∂

∂p

(
ε2

p
∂ Fp

∂r

)
− ∂

∂r

(
ε2

p
∂ Fp

∂p

)]
. (2.9)

The first term on the right-hand side can be transformed into the integral over the surface of the
first Brillouin zone. One can see that the integrands over the opposite faces of the first Brillouin
zone have the same absolute values but opposite signs. Therefore the whole integral vanishes.
The same transformation has been applied to the phonon variables.
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The equations for heat production given in the present section will be used below for the
calculation of the spatial distribution of generated heat. This applies both to the bulk samples
and the nanostructures. Indeed, (as we will see) a nonballistic current conduction through a
narrow nanostructure may result in the heat release in the nanostructure itself and the adjoining
bulk reservoirs.

The equation for the total entropy of the electron and phonon gases reads

Ŝ =
∫

d3r S(r). (2.10)

S = S(e) + S(p), where (we will set kB = 1 throughout the paper)

S(e) =
∫

dξp s(e)
p , s(e)

p = − [
Fp ln Fp + (1 − Fp) ln(1 − Fp)

]
, (2.11)

S(p) =
∫

dηqs(p)
q , s(p)

q = [−Nq ln Nq + (1 + Nq) ln(1 + Nq)
]
. (2.12)

Differentiating S with respect to time and inserting ∂ Fp/∂ t and ∂ Nq/∂ t from the Boltzmann
equations for the electrons and phonons, equations (2.1) and (2.2), we obtain

∂S

∂ t
+ div s =

[
∂S

∂ t

]
coll

(2.13)

and

dŜ
dt

=
∫

d3r

[
∂S

∂ t

]
coll

. (2.14)

Here the rate of entropy density production is given by[
∂S

∂ t

]
coll

=
∫

dξp

[
∂ Fp

∂ t

]
coll

ln
1 − Fp

Fp
+

∫
dηq

[
∂ Nq

∂ t

]
coll

ln
1 + Nq

Nq
, (2.15)

while s = s(e) + s(p) is the entropy flux. We have

s(e) =
∫

dξp Fp
∂εp

∂p
ln

1 − Fp

Fp
, s(p) =

∫
dηq Nq

∂�q

∂q
ln

1 + Nq

Nq
. (2.16)

In deriving equation (2.13) we have taken into account that the integrals∫
dξp

∂

∂p

(
ln

1 − Fp

Fp

∂ε̃p

∂r
Fp

)
and

∫
dηq

∂

∂q

(
ln

1 + Nq

Nq

∂�q

∂r
Nq

)
(2.17)

vanish due to the periodicity of the integrands in reciprocal lattice space. We have also assumed
that the entropy flux through the sample’s surface vanishes.

It is important that the quantity (2.15) is within the accepted approximation a local
quantity, depending on the space coordinates as parameters. This enables one to separate the
problems of the heat release in the quantum wire (or, in other words, in the squeezed part
of the point contact) and in the reservoirs that we are going to solve in the present paper.
The Boltzmann equation for a quantum wire as well as the corresponding rate of the entropy
variation will be formulated below in section 3.

A univocal definition of the heat released by a physical system irrespective of whether it
is in an equilibrium state, or in contact with a thermostat, or in a nonequilibrium state, can
be found for instance in [20 sections 14 and 20]. Using this definition, one can state that an
isolated macroscopic system possesses a mechanical energy, E . This means that, owing to
internal processes, without a resulting variation of its volume, the system can execute work
on external systems. In general the amount of work depends on how the internal state of the
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system under consideration is changed. Mechanical energy is the maximal amount of work that
can be produced if the system finally reaches the state of thermodynamic equilibrium.

It is well known (see [20]) that the rate of heat generation dQ/dt = −dE/dt equals the
negative rate of mechanical energy dissipation

dQ
dt

= −dE
dt

= dU
dŜ

dŜ
dt

= T0
dŜ
dt

, (2.18)

where U(Ŝ) is the total energy of the system expressed as a function of its entropy Ŝ by the
relations of equilibrium thermodynamics, T0 being the temperature of such an equilibrium
system whose entropy is equal to Ŝ. (In general T0 is not a real temperature of some system
or a thermostat but rather an ancillary quantity that can be introduced irrespective of whether
the system in consideration is in equilibrium or not, including the nonequilibrium states that
cannot be described by introduction of any temperature.) Making use of equation (2.14), one
gets in our case

dQ
dt

= T0
dŜ
dt

= T0

∫
d3r

[
∂S

∂ t

]
coll

. (2.19)

This means that the mechanical energy of an isolated system, unlike its total energy, is not
conserved. Due to the relaxation processes the mechanical energy of the system dissipates into
heat. Equation (2.19) describes the rate of mechanical energy dissipation in the nonequilibrium
system in consideration or, in other words, the rate of Joule heat generation both in the nanowire
and in the reservoirs.

We are dealing with two large reservoirs connected by a nanowire. Before having been
connected to a source of voltage the whole system is in the equilibrium and can be described
by a common temperature. Now we connect the system with a battery that results in shifts of
the chemical potentials of the reservoirs. The reservoirs have the same temperature and begin to
exchange particles and energy with each other. As, however, the current across the nanowire is
very weak one can assume that the reservoirs maintain equilibrium with the same temperature
although their chemical potentials differ. The electron distribution function in the nanowire is
a nonequilibrium one, and we do not ascribe any temperature to the electron distribution in the
wire. The temperature T in equation (3.8) below follows directly from the definition (2.19).

3. Heat release in nanostructure

Consider a nanowire in which the x-axis is the direction along which the electron motion
is infinite and current flows. Along the perpendicular direction(s) the electron motion is
quantized. To be definite we will discuss a three-dimensional (3D) case although one can
turn to a 2D case by a simple change of notation. We will consider the so-called adiabatic
constriction (see Glazman et al [21]) where the potential profile varies smoothly along the x-
axis on the scale of the electron de Broglie wavelength. We assume that the electron mean free
path is bigger than the characteristic dimensions of the microstructure. Then there is a system
of 1D electron bands (channels) describing the electrons’ motion in the x-direction both in
the microstructure and in the adjoining parts of the contacts. This motion will be considered
(quasi)classically. The minimum width of the constriction is of the order of the de Broglie
wavelength; therefore the transverse motion is quantized. In the spirit of a approach of [21] we
assume that the variables x and r⊥ are separable in the adiabatic approximation. This means
that for each value of x the r⊥-dependence of the potential determines the wavefunction of
transverse quantization ηn(r⊥; x) that depends on x as a parameter. Here n is the quantum
number of transverse quantization. In other words, the distribution function is defined as a
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coarse-grained function of the longitudinal quasimomentum and coordinate (only for such a
function can one introduce the coordinate x and the x-component of the (quasi)momentum
simultaneously). Therefore such a distribution function cannot describe such a phenomena as
Friedel-like oscillations. They are smeared out due to the averaging as

∫ �x/2
−�x/2 sin 2kF(x + �x),

where |�x | � 1/kF.
The electron spectrum depends on x , and this dependence has the form

εn(p; x) = p2/2m + εn(0; x), (3.1)

where m is the electron effective mass and εn(0, x) is the position of the band bottom that
depends on x as a parameter. εn(0; x) is the solution of the eigenvalue problem for the
Hamiltonian

H = − h̄2

2m

(
∂2

∂y2
+ ∂2

∂z2

)
+ e
(r⊥; x). (3.2)

Here the potential 
(r⊥; x) can be regarded as including both the constriction potential profile
and the self-consistent field.

Now, dξp = dp/2π h̄ (summation over the spin variable is implied), vp = ∂εnp/∂p =
p/m is the electron group velocity (that does not depend explicitly on n), and Fnp(x) is the
electron distribution function that depends on the quantum number n as a parameter, while
p (the x-component of the electron quasimomentum) and x can be considered as classical
variables. The distribution function Fnp(x) satisfies the Boltzmann equation

v
∂ Fnp(x)

∂x
− e

∂ϕn(x)

∂x

∂ Fnp(x)

∂p
=

[
∂ Fnp

∂ t

]
coll

. (3.3)

Here the potential averaged over the transverse coordinates

ϕn(x) =
∫

dr⊥|ηn(r⊥; x)|2ϕ(r) (3.4)

tends to the external fixed value +V/2 far in the left contact and to the value −V/2 far in the
right contact, and[

∂ Fnp

∂ t

]
coll

=
∑

n′

∫
dξp′

∫
dηq{wnn′(p, p′; q)

× [Fn′ p′(1 − Fnp)(Nq + 1) − Fnp(1 − Fn′ p′)Nq]
+ wn′n(p′, p; q)[Fn′ p′(1 − Fnp)Nq − Fnp(1 − Fn′ p′)(Nq + 1)]}. (3.5)

Here the phonon distribution function Nq is to be determined from the corresponding
Boltzmann equation and

wnn′(p, p′; q) ∝ δp′,p+h̄qx δ(εn′ p′ − εnp − h̄�q) (3.6)

is the probability of an electron transition from the state specified by the quantum numbers
n′, p′ to the state n, p accompanied by emission of a phonon with the wavevector q. In such a
general form this equation is valid for any phonon state. If one considers the interaction of the
electrons of a nanowire with the bulk phonons then the perturbation theory gives (cf [18, 19])

wnn′(p, p′, q) = 2π

h̄
|cq|2|〈n| exp(iq⊥r⊥)|n′〉|2δ[εnp − εn′ p′ + h̄�q]δp′,p+h̄qx . (3.7)

Here cq is the matrix element of the interaction of electrons with bulk phonons; r⊥ denotes
y, z, while q⊥ denotes qy, qz. We assume that the nonequilibrium phonons are removed from
the vicinity of the quantum wire, so that their distribution function is the equilibrium Bose
function.
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The rate of heat release for a nanostructure system is given by

dQ
dt

= T
dŜ
dt

. (3.8)

For an electron system interacting with phonons the entropy production is given by

dŜ
dt

=
∫

dx

[
∂S

∂ t

]
coll

, (3.9)

where[
∂S

∂ t

]
coll

=
∑
nn′

∫
dξp

∫
dξp′

∫
dηqwnn′(p, p′; q) ln

Fn′ p′(1 − Fnp)(Nq + 1)

Fnp(1 − Fn′ p′)Nq

× [Fn′ p′(1 − Fnp)(Nq + 1) − Fnp(1 − Fn′ p′)Nq]. (3.10)

Following the approach developed by Landauer [22], Imry [23], and Büttiker [24], one
can present the nonequilibrium electron distribution function in the nanowire in the zeroth
approximation in the electron–phonon scattering in the form

Fnp0 = θ(p)F (0)(εnp − μ(+)) + θ(−p)F (0)(εnp − μ(−)), (3.11)

where F (0) is the Fermi function, μ(±) = μ± eV/2. To obtain this solution of equation (3.3) we
neglect the collision term and assume that there is no field within the nanowire. This equation
describes only the transmitted modes, i.e. we consider the simplest possible situation. We have
not introduced here transmission and reflection coefficients implying that any mode having the
energy greater (smaller) than some maximum energy is totally transmitted (reflected). Inserting
this function in equation (3.10) and using the equilibrium phonon function Nq one can see that
only the domains pp′ < 0 contribute to the integral over the momenta. Consider first the
p > 0, p′ < 0 domain. Using the identities

1 − F (0)(ε) = eε/T F (0)(ε), 1 + N (0)
q = eh̄�q/T N (0)

q

and the energy conservation laws imposed by the δ-function in the expression for the transition
probability, we can sufficiently simplify the integrand: the logarithmic term in the integrand can
be reduced to −eV/T , while the difference between the distribution function product yields

Fn′ p′(1 − Fnp)(Nq + 1) − Fnp(1 − Fn′ p′)Nq

= −2 sinh

(
eV

2T

)
Nq F (0)(εnp − μ(+))F (0)(εn′ p′ − μ(−))

× exp
[
(εnp + h̄�q − μ)/T

]
. (3.12)

For p < 0, p′ > 0 we get the same expressions but with V replaced by −V . Discarding eV/2
in the arguments of the Fermi functions and replacing sinh(eV/2T ) by eV/2T in the linear
response regime, we arrive at[

∂S

∂ t

]
coll

= 2

(
eV

T

)2 ∑
nn′

∫ ∞

0
dξp

∫ ∞

0
dξp′

∫
dηq⊥wnn′(p, p′; q)Nq

× F (0)(ε − μ)[1 − F (0)(ε′ − μ)]. (3.13)

Here in the transition probability due to the quasimomentum conservation along the
longitudinal direction (x-axis), qx = (p + p′)/h̄, ε = εnp and ε′ = εnp + h̄�q. Introducing the
phonon collision-controlled part �G of the conductance

�G = −2
e2L

T

∑
nn′

∫
dηq⊥|〈n′|eiq⊥r⊥ |n〉|2Cn′n, (3.14)

Cn′n =
∫ ∞

0
dξp

∫ ∞

0
dξp′ Nq

2π

h̄
|cq|2δ(ε′ − ε − h̄�q)[1 − F (0)(ε′ − μ)]F (0)(ε − μ) (3.15)
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(where L is the length of the nanowire), we can write for the entropy production[
∂S

∂ t

]
coll

= − V 2

LT
�G, (3.16)

whereas for the heat generation within the nanowire we get(
dQ
dt

)
nan

= T
∫ L/2

−L/2
dx

[
∂S

∂ t

]
coll

= −V 2�G. (3.17)

For a uniform quantum wire the heat is generated uniformly along the whole length L of the
wire. We assume that the radius of curvature of the parts that join the nanowire with the
reservoirs is much smaller than L. The change of the conductance due to electron–phonon
collisions �G being negative, the corresponding contribution to the heat release within the
nanowire at the fixed applied voltage is naturally positive, whereas the total conductance
decreases. This may seem strange since provided the applied voltage is fixed the Joule heat
V 2G must decrease with decrease of the conductance while our formula indicates a positive
contribution to the heat. However, this is quite natural since the electron scattering changes the
electron distribution function both in the nanowire and in the reservoirs. In the next section we
will show that the decrease of the heat released in the reservoirs turns out to be twice as big as
the heat released within the wire.

4. Electron distribution function in nanowire

We assume the nanowire to be a linear structure of length L. The situation in the nanowire can
be described by iterations treating the electron–phonon collision term as a perturbation. We
have for the distribution function

Fnp(x) = Fnp0 + �Fnp(x), (4.1)

where Fnp0 is given by equation (3.11) and �Fnp(x) satisfies the Boltzmann equation

v
∂�Fnp(x)

∂x
− e

∂�ϕn(x)

∂x

∂ Fnp0

∂p
= I [Fnp0]. (4.2)

Here �ϕn(x) is the variation of the self-consistent potential ϕn(x) (introduced in equation (3.4)
as an average with respect to transverse coordinates) due to the collisions. The solution Fnp0

obtained from equation (3.11) entirely neglecting the collisions is inserted into the scattering
integral (for brevity we have introduced a more compact notation I [Fnp0] for the latter) as well
as into the drift term. We integrate this equation along the electron trajectory. Therefore, the
solution can be written as

�Fnp(x) =
(

x ± L

2

)
1

v
I [Fnp0] + e�ϕn

∂ F (0)
np

∂εnp
, (4.3)

where the upper (lower) sign in the first term stands for p > 0 (p < 0). The potential �ϕn(x)

must in general be determined from the Poisson equation. If the screening length is much
smaller than the dimensions of the wire it is equivalent to the neutrality condition. Then

e�ϕn(x) = x
1

νn

∫
dξp I [Fnp0]/v, (4.4)

where we have introduced the density of states for the nth channel,

νn =
∫

dξp

(
−∂ F (0)

np

∂εnp

)
. (4.5)
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Taking into account equations (3.11) and (4.3), we get the deviation of the distribution function
of electrons moving to the right (at x = L/2):

�Fnp(L/2) =
(

−∂ F (0)
np

∂εnp

)(
eV − L

2νn

∫
dξp

1

v
I [Fnp0]

)
+ L

v
I [Fnp0]. (4.6)

For the electrons moving to the left (i.e. for p < 0) at the same point one gets

�Fnp(L/2) =
(

−∂ F (0)
np

∂εnp

)(
− L

2νn

∫
dξp

1

v
I [Fnp0]

)
. (4.7)

In the right contact the deviation �Fnp of the distribution functions from the equilibrium
satisfies the Boltzmann equation

v
∂�Fnp

∂x
− e

∂ϕn

∂x

∂ F (0)
np

∂p
= I�Fnp (4.8)

with the boundary condition at L/2 represented by equation (4.6). Here I is the linearized
integral operator (3.5) acting on �Fnp. Its explicit expression for the electron–phonon
collisions is

I�Fnp =
∑

n′

∫
dξp′

∫
dηq�Fn′ p′ {wnn′(p, p′; q)[(1 − F (0)

np )Nq + F (0)
np (Nq + 1)]

+ wn′n(p′, p; q)[(1 − F (0)
np )(Nq + 1) + F (0)

np Nq]}
− �Fnp

∑
n′

∫
dξp′

∫
dηq{wnn′(p, p′; q)[F (0)

n′ p′(N (0)
q + 1) + (1 − F (0)

n′ p′)N (0)
q ]

+ wn′n(p′, p; q)[F (0)

n′ p′ N (0)
q + (1 − F (0)

n′ p′)(N (0)
q + 1)]}. (4.9)

It is an algebraic sum of two terms. One of them is an integral term, where �Fn′ p′ is in the
integrand. The other one is a time-of-relaxation term which has the form[

∂ Fnp

∂ t

](τ )

coll

= −�Fnp

τnp
, (4.10)

where the relaxation time τnp is given by

1

τnp
=

∑
n′

∫
dξp′

∫
dηq{wnn′(p, p′; q)[F (0)

n′ p′(N (0)
q + 1) + (1 − F (0)

n′ p′)N (0)
q ]

+ wn′n(p′, p; q)[F (0)
n′ p′ N (0)

q + (1 − F (0)
n′ p′)(N (0)

q + 1)]}. (4.11)

As indicated in [17], to describe the transport in the reservoirs the integral term can be
discarded, so one can apply the relaxation time approximation. Thus equation (4.8) is reduced
to

v
∂�Fnp

∂x
− e

∂ϕn

∂x

∂ F (0)
np

∂p
= −�Fnp

τnp
. (4.12)

The solution for p > 0, x > L/2 can be written as

�Fnp(x) = �Fnp(L/2) exp
[−(x − L/2)/vτnp

]

+ ∂ F (0)
np

∂εnp

∫ x

L/2
dx ′e

∂ϕn

∂x ′ exp
[−(x − x ′)/vτnp

]
, (4.13)

whereas for p < 0 we have

�Fnp(x) = ∂ F (0)
np

∂εnp

∫ x

+∞
dx ′ e

∂ϕn

∂x ′ exp
[−(x − x ′)/vτnp

]
. (4.14)
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Let us first concentrate on the distances 0 < x − L/2 � l (where l is the mean free path).
In this region we can omit the second term in equation (4.13) and the expression given by
equation (4.14). The omitted part of the distribution function is important only at distances
from the constriction much greater than the mean free path. We will discuss this point in the
next section.

As for equation (3.10) for the entropy production, in the same approximation it reduces to[
∂S

∂ t

]
coll

=
∑

n

∫
dξp

(�Fnp)
2

τnp F (0)
np (1 − F (0)

np )
. (4.15)

In what follows we shall retain the terms proportional to V 2 and linear in the collision term.
We have

[
�Fnp(x)

]2 = θ(p)

[
−∂ F (0)

np

∂εnp

]
eV

{
eV

[
−∂ F (0)

np

∂εnp

]
+ 2

L

v
I [Fnp0]

}

× exp
[−2(x − L/2)/vτnp

]
. (4.16)

Inserting this expression into equation (4.15) and using the identity F (0)(1 − F (0)) =
−T ∂ F (0)/∂ε we get[

∂S

∂ t

]
coll

=
∑

n

∫ ∞

0
dξp

(
−∂ F (0)

np

∂εnp

)
(eV )2

T τnp
exp

[−2(x − L/2)

vτnp

]

+
∑

n

∫ ∞

0
dξp

2LeV

T vτnp
I [Fnp0] exp

[−2(x − L/2)

vτnp

]
. (4.17)

Here the first term reproduces the result for a purely ballistic nanowire (see [17]), while the
second term is due to the electron–phonon contribution. Since∑

n

∫ ∞

0
dξp I [Fnp0] = V �G

eL
, (4.18)

we have that the phonon contribution to the heat release in the right contact is given by(
dQ
dt

)
ph

= V 2�G. (4.19)

Taking into account that in the left contact we have the same contribution, we arrive at the
conclusion that the total negative contribution to the heat release due to electron–phonon
interaction is V 2�G, as it should be from energy conservation considerations.

Now we will consider the region of relatively large values of x . Far enough from the
constriction so that the width of the constriction is much greater than the de Broglie wavelength
h̄/

√
mT , one can use the classical Boltzmann equation describing particles with 3D momentum

p, and the situation can be described by the local conductivity σ . We assume that the classical
description is possible at distances from the midpoint of our wire even smaller than the mean
free path. It is seen from equations (4.13) and (4.14) that if x − L/2 � l we have for the odd
part of the distribution function

�Fnp(x) = eEn(x)vτnp

(
−∂ F (0)

np

∂εnp

)
. (4.20)

The very form of this expression makes it obvious that in the region of consideration we can
write instead of this expression its 3D counterpart

�Fp = eEvτp

(
−∂ F (0)

p

∂εp

)
. (4.21)
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The continuity relation div j = 0 then requires �ϕ(r) = 0. Imposing the constraint that the
total current ∫

j dS = −
∫

σ∇ϕ dS = J (4.22)

is equal to GV , we get that the potential far from the constriction in the right contact is
described by

ϕ(r) = −V

(
1

2
− G

σ�r

)
, (4.23)

where � is the solid angle describing the opening of the wire into the right contact.
Let us estimate the part of the heat released in this region and compare it with the heat

released at distances of the order of the mean free path. Entropy production in this region is
simply

T

[
∂S

∂ t

]
= σ(∇ϕ)2. (4.24)

For the heat we have(
dQ
dt

)(1)

= σ

∫
r>l

(∇ϕ)2 dV = V 2G
G

�σ l
, (4.25)

i.e. the heat release in this region is smaller according to the small parameter G/σ l ∼ (λF/ l)2.

5. Electron–hole symmetry for Fermi-degenerate conductors

The property that the overall rate of heat generation in both reservoirs is the same is a
consequence of a special symmetry that is typical for conductors where the electrons have a
strong Fermi degeneracy. Now we will analyse this property in some detail.

To begin with, we replace Fnp by

Gnp = 1 − Fnp. (5.1)

Gnp is the distribution function of holes. It may be useful to introduce such a function for the
case of a strong Fermi degeneracy. Then one gets instead of equation (3.5)[

∂Gnp

∂ t

]
coll

=
∑

n′

∫
dξp′

∫
dηq{wnn′(p, p′; q)[Gn′ p′(1 − Gnp)Nq

− Gnp(1 − Gn′ p′)(Nq + 1)] + wn′n(p′, p; q)[Gn′ p′(1 − Gnp)(Nq + 1)

− Gnp(1 − Gn′ p′)Nq]}. (5.2)

Introducing the variable y = −x , one can write for a small nonequilibrium part �G

∂�Gnp

∂y
+ �Gnp

τnp
= 0 for p < 0. (5.3)

This equation has the same form as equation (4.12) (if one neglects the potential term that
gives, as we have seen, a small contribution). However, it describes the heat generation in the
left reservoir. Accordingly, the value of the time of relaxation τnp can be quite different as
compared with that in the right reservoir provided the relaxation properties of the reservoirs are
different. Integrating the solution of this equation over y, one can see that the amount of heat
released in the contact per second is independent of the actual mechanism of relaxation. This is
how the equivalence of the two reservoirs in regard to the heat generation can be obtained from
the symmetry considerations. Physically it is immaterial as to whether one considers the heat
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release as a result of transfer of electrons or holes. This is the reason for the equivalence of the
heat release in both reservoirs.

We wish to emphasize that this symmetry is only approximate. It is the more exact the
better the inequality

T/μ(n) � 1 (5.4)

is fulfilled. The point is that the stripe of width T near the chemical potential μ(n) ≡
μ − εn(0; 0) is responsible for transport phenomena, including the heat generation. The
electron–hole symmetry is valid provided one can neglect the variation of the density of electron
states within this stripe. So the heat release in both reservoirs is the same, with the relative
accuracy of T/μ(n) � 1.

6. Nonequilibrium phonons and their role

In the present section we will discuss the role of the phonons in the Joule heat balance due
to the current in the quantum wire. Our purpose is to show that the energy transferred to the
phonon system makes a small contribution to the total heat balance.

To begin with, we will analyse equation (3.14) for the contribution �G to the conductance
due to the electron–phonon collisions. Let us consider the simplest case in which only the
lowest electron miniband (n =1) is occupied. The quasimomentum transferred to a phonon is
qx = (p+ p′)/h̄ � 2pF/h̄. We are interested in the case spF � T (s is the sound velocity). In
the opposite case in which spF � T , the number of phonons interacting with the conduction
electrons and |�G| are small. This case is not interesting for us and we will not consider it.

Taking as an upper estimate for the matrix element |〈n| exp(iq⊥r⊥)|n′〉| the quantity
1/(1 + q2

⊥d2) (d being the width of the quantum well) we see that only the phonons with
transverse quasimomentum q⊥ ∼ 1/d contribute to �G.

Assuming h̄/d � pF and restricting ourselves to the case spF � T so that h̄�q � T ,
we can discard h̄�q in the δ-function describing energy conservation and use Nq � T/h̄�q.
The electron–phonon coupling constant 2π |cq|2/h̄ for the deformation potential interaction can
be written as π�q2/ρ�q, where � is the deformation potential constant, while ρ is the mass
density. We get the following estimation for �G:

�G ∼ − e2

π h̄

LT �2

h̄2v2
Fρs2d2

. (6.1)

As one knows the probabilities of electron–phonon collisions one can estimate the energy
U̇ph transferred to the phonon system per second. This energy can be expressed through the
phonon–electron scattering integral taking into account the terms h̄�q:[

∂ Nq

∂ t

]
coll

=
∑
nn′

∫
dξp

∫
dξp′wnn′(p, p′; q)

[
F ′(1 − F)(Nq + 1) − F(1 − F ′)Nq

]
. (6.2)

Here, considering the scattering as weak, one can use the equilibrium phonon distribution
function and the electron distribution function of the zeroth order in the electron–phonon
interaction (equation (3.11)). The integrand can then be simplified to

F ′
0(1 − F0)(Nq + 1) − F0(1 − F ′

0)Nq = ± 2 sinh

(
eV

2T

)
(1 + Nq)

× exp [(εnp − μ)/T ]F (0)(εnp − μ ± eV/2)F (0)(εn′ p′ − μ ∓ eV/2) (6.3)

for the domains p < 0, p′ > 0 and p > 0, p′ < 0 respectively. The sum of these contributions
gives the difference between the electron distribution functions shifted by eV/T . Expanding
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the difference, we get in the integrand

Nq

(
eV

2T

)2

F (0)(εnp − μ)[1 − F (0)(εn′ p′ − μ)][F (0)(εnp − μ) − F (0)(εn′ p′ − μ)]. (6.4)

The rate of energy transfer to the phonon system can then be written as

dUph

dt
= e2V 2 L

T

∑
nn′

∫
dηq⊥ |〈n′|eiq⊥r⊥ |n〉|2 Bn′n,

Bn′n =
∫ ∞

0
dξp

∫ ∞

0
dξp′ Nq

2π

h̄
|cq|2δ(ε′ − ε − h̄�q)

× [1 − F (0)(ε′)]F (0)(ε)
h̄�q

T
[F (0)(ε) − F (0)(ε′)].

(6.5)

Since by using the inequality h̄�q � T the product of the distribution functions can be
approximated as

[1 − F (0)(ε′)]F (0)(ε)[F (0)(ε) − F (0)(ε′)] � h̄�q

T
[(1 − F (0)(ε))F (0)(ε)]2, (6.6)

we see that
dUph

dt
�

( spF

T

)2
V 2�G. (6.7)

As the factor spF/T is small we come to the conclusion that the mechanical energy dissipated
within the wire is much greater than the energy transferred to the phonon system. Actually this
is the case for which one can discard the terms h̄�q in the δ-functions in equation (3.14). This
statement is valid both for calculation of �G and of the heat release within the nanowire.

One should keep in mind, however, that actually the electron–phonon collisions are
inelastic. To derive the Boltzmann equation for the conduction electrons of the nanowire as well
as the equation for the entropy production one should take into account the inelasticity. Thus the
quasimomentum relaxation is in the present case accompanied by energy relaxation. The latter,
however slow, is nevertheless essential for the applicability of our methods of the heat release
calculation. (It is worthwhile noting that the phase coherence of the electron wavefunctions is
destroyed as a result of such inelasticity.)

We could have easily considered the contribution of all the relevant transitions of the
type n ←→ n′. We would get for qz the estimate qz � pF/h̄. As for the matrix element
|〈n| exp(iq⊥r⊥)|n′〉|, we have the same upper estimate for it as above. As a result, the
estimate (6.7) would not change.

7. Conclusion

The methods outlined in the present paper can be generalized to consider more complicated
arrangements of the circuits. To know the rate of heat generation may be important for estimates
concerning various devices in which the structure of the circuits is more involved.

Reference [17] and the present paper also lay the foundation for treatment of non-ohmic
effects. They should be observable for eV � T . In the present paper we consider a linear case
where eV much smaller than T , and we assume that the length of the nanostructure is much
smaller than the electron mean free path. A nonlinear case would be physically much richer.
In this case one should consider the nonequilibrium electron and phonon system on an equal
footing: there could be phonon accumulation in the vicinity of the wire and even many-phonon
processes could be of importance. Probably all these processes might take place if the inelastic
electron–phonon scattering length is comparable to the length of the wire and if the applied
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voltage is big enough. However, in the present paper we restrict ourselves to much more simple
linear case. In the classical regime, nonlinear phenomena in the current–voltage characteristics
of point contacts between normal metals were observed and discussed in a pioneering work by
Yanson [25].

In summary, we have discussed the Joule heat generation for the phonon-assisted ohmic
resistance. The heat is released not only in the reservoirs but also in the course of electron–
phonon collisions in the quantum wire. We believe that this conclusion can be verified by the
technique used in [12]. A quantum point contact can be fabricated by joining the interior of a
quantum wire and electron gas outside the wire using additional gates (see [12] where much
more complicated nanostructures have been defined and employed). We expect that due to the
Joule heat released in the interior of the nanostructure there would be a heat flow through such
a quantum point contact that could be measured by the methods used in [12].

We have demonstrated that to calculate the Joule heat generation with regard to the electron
collisions it is sufficient (i) to treat the kinetic part of the problem up to the first order in the
voltage drop across the nanostructure (or in electric field E) and (ii) to disregard the energy
exchange with the phonons. The total rate of heat generation in each reservoir is the same.
This is a consequence of an electron–hole symmetry present in the case of a strong Fermi
degeneracy.
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